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Abstract
Given a SUSY potential �(x) in nonrelativistic quantum mechanics, a pair
of potentials V±(x) can be constructed to describe the bosonic and fermionic
sectors of the theory. We apply a form of electric–magnetic duality to such a pair
of potentials and derive conditions that must be satisfied in order for the images
of the original potentials under duality to still form a supersymmetric pair in
one or two dimensions. These conditions serve as compatibility conditions
between the supersymmetry and duality transformations.

PACS numbers: 03.65.−w, 11.30.Pb

1. Introduction

The term duality refers to an equivalence between two different theories or between two
different parameter regions of the same theory; examples are duality between strong and
weak coupling limits, high and low temperature regimes, perturbative and solitonic sectors, or
between electric and magnetic sectors. The idea of duality has in recent years become a very
important topic in QCD and supergravity, and is responsible for connecting the various string
theory limits of M-theory. This work has a history that can be traced through investigations
carried out in the 1970s [1, 2] back to Dirac’s work on magnetic monopoles in the 1930s [3], but
it exploded after the results of Seiberg and Witten [4] in the mid 1990s. (For reviews, see [5]
for QCD; [6–8] for supersymmetric field theories; and [9] for M-theory. A number of articles
concerning aspects of duality in both field theory and string theory can be found in [10].)

Given the importance of duality in field theory and string theory, it would appear to be
interesting to study duality in the simpler context of nonrelativistic quantum mechanics, where
the subject can be studied with many of the nonessential complications stripped away. Since
the concept of duality seems to reach its fullest power when coupled with supersymmetry,
it should be especially interesting to study it in the context of supersymmetric quantum
mechanics. So far, only a few authors seem to have studied duality in quantum mechanics (for
example, [11–13]), and even fewer in the supersymmetric case [14]. In this paper, we examine
a duality transformation introduced in [12] and pursue the question of when this transformation
is compatible with supersymmetry in specific models of supersymmetric quantum mechanics.
More specifically, we apply the transformation to a set of supersymmetric pair potentials
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V±(x), producing a new set of potentials Ṽ±(u), and then derive conditions that must be
satisfied in order for the new potentials to still form a supersymmetric pair. In section 3 we
work in the context of the N = 2 Witten model in one dimension, and in section 4 we deal
with a two-dimensional N = 1 model that includes the possibility of vector potentials.

2. Supersymmetric quantum mechanics

Here, we very briefly review supersymmetric quantum mechanics. N-extended supersymmetry
(often denoted SUSY, for short) can be formulated in terms of a set of Hermitian generators
Qi, i = 1, . . . , N . For even N, an equivalent formulation is often used with non-Hermitian
generators Q̃i and Q̃

†
i , where Q̃i = 1√

2
(Qi + iQ2i ), for i = 1, 2, . . . , N/2. Supersymmetry

was first introduced into nonrelativistic quantum mechanics by Nicolai [15] and Witten [16].
Reviews can be found in [17, 18].

Supersymmetric quantum mechanics begins with a set of fermionic supercharge operators
Qi satisfying

{Qi,Qj } = Hδij .

The Hamiltonian can be block diagonalized,

H =
(
H− 0
0 H+

)
where the blocks correspond to the Hamiltonians for the fermionic and bosonic sectors. The
most commonly studied model of supersymmetric quantum mechanics is the Witten model, in
which the corresponding potential functionsV±(x) can be written in terms of a single function
�(x), known as the SUSY potential:

V−(x) = �2(x) − h̄√
2m

�′(x)

V+(x) = �2(x) +
h̄√
2m

�′(x).

It should be noted that in this context the words ‘bosonic’ and ‘fermionic’ do not necessarily
refer to particles of integer and half-integer spin, but refer to states with positive (bosonic) or
negative (fermionic) eigenvalues of a Witten operator. A Witten operator W is any operator
satisfying the conditions

[W,H ] = 0 {W,Qi} = 0 W 2 = 1.

(See [17] or [18] for more information on such operators.)
There are several equivalent criteria for determining whether the supersymmetry is good

or whether it is spontaneously broken. For example, supersymmetry is broken if the ground
state energy is nonzero. In terms of states, unbroken SUSY will require that the supercharges
annihilate a normalizable ground state. Defining

f (x) =
∫ x

x0

�(x ′) dx ′

for any fixed, arbitrary point x0, then in one dimension such a state exists for a potential defined
on domain a � x � b if limx→a f (x) and limx→b f (x) both diverge and have opposite signs.

3. Duality and supersymmetry in one dimension

Here, we restrict ourselves to the simplest case of the N = 2 Witten model in one spatial
dimension. The case of two dimensions will be examined in the next section. We will largely
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follow the approach taken in [12] for the case of nonsupersymmetric systems. There, the
duality transformation we will use was shown to take electrically charged particles into dyons,
i.e. particles carrying both electric and magnetic charges.

Begin with the pair of one-dimensional time-independent Schrödinger equations:

0 = (H± − E)ψ±(x) =
(

− h̄2

2m

d2

dx2
+ �2(x) ± h̄√

2m

d�(x)

dx
− E

)
ψ±(x).

Let

r = x2

L
and define new wavefunctions

ψ±(x) = rαψ̃±(r)
for some as-yet undetermined exponent α. The length scale L is present in order to make the
dimensions work out correctly, and can be chosen to be any characteristic length scale of the
problem. For example, L could be chosen to be h̄√

mE
. The Schrödinger equation now takes

the form

0 = 4rα+1

{
− h̄2

2m

d2

dr2
− h̄2

8m

(
2α(2α − 1)

r2
+

2(4α + 1)

r

d

dr

)

+
L

4r

(
�̂2(r) ± h̄

√
2r

mL

d�̂(r)

dr
− E

)}
ψ̃±(r)

where we have defined

�̂(r) = �(r(x)).

By choosing α = − 1
4 , the first derivative term can be removed, leaving the equation

0 =
{

− h̄2

2m

d2

dr2
− 3h̄2

32mr2
+

L

4r

(
�̂2(r) ± h̄

√
2r

mL

d�̂(r)

dr
− E

)}
ψ̃±(r).

We wish this again to be in the form of a Schrödinger equation

0 =
{
− h̄2

2m

d2

dr2
+ Ṽ ±(r) − Ẽ

}
ψ̃±(r)

for some new set of energies Ẽ and new pair potentials Ṽ ± derived from some new SUSY
potential �̃(r),

Ṽ ±(r) = �̃2(r) ± h̄√
2m

d�̃(r)

dr
.

This implies two conditions that must be satisfied:

(i)
1

2

√
L

r

d�̂(r)

dr
= d�̃(r)

dr

(ii)
L

4r
(�̂2(r) − E) − 3h̄2

32mr2
= �̃2(r) − Ẽ.

These two conditions can easily be combined into a single integral equation. Integrating
relation (i) by parts,

�̃(r) =
∫ r

r0

1

2

√
L

r ′
d�̂(r ′)

dr ′ dr ′ + �̂(r0)

= −
∫ r

r0

(
−1

4

)√
L

(r ′)3
�̂(r ′) dr ′ +

1

2

√
L

r ′ �̂(r ′)|rr0
+ �̂(r0)
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for any fixed r0. Written in a slightly different form, this is

(i′) �̃(r) = 1

4

∫ √
L

r3
�̂(r) dr +

1

2

√
L

r
�̂(r) + K

where now the integral is indefinite and K is an integration constant. Also, rearranging (ii),
we have

(ii′) �̃(r) = ±
√
Ẽ − 3h̄2

32mr2
+

L

4r
(�̂2(r) − E).

Comparing the last two equations, we have the desired necessary compatibility condition:

1

4

∫ √
L

r3
�̂(r) dr +

1

2

√
L

r
�̂(r) + K = ±

√
Ẽ − 3h̄2

32mr2
+

L

4r
(�̂2(r) − E). (3.1)

It is only systems with SUSY potentials satisfying this condition that will again be mapped
into supersymmetric systems by the duality transformation.

Instead of an integral equation, this result can be written in the form of an equivalent
differential equation. Starting from conditions (i) and (ii), it is straightforward to show that

�̂′(r) = ±

 3h̄2

8mr2 − L
2r (�̂

2(r) − E)√
(�̂2(r) − E) − 3h̄2

8mrL
+ 4r

L
Ẽ ∓ �̂(r)


 .

This could also be written as a differential equation for �̃ instead of �̂. In this differential
context, the constant K again appears as an integration constant; specifically, it fixes the
asymptotic value of �̃:

K = lim
r→∞ �̃(r).

To get some idea of the sorts of systems that satisfy these conditions we can try some trial
forms for � and see what constraints are forced onto the parameters. For example, consider
the trial solution

�̂(r) = Crβ

for unknown constants C and β. Plugging this into equation (3.1), it is easy to see that (3.1)
can only be satisfied if

K2 − Ẽ = 0

β = − 1
2

which in turn implies that

C2 = h̄2

2mL

K = −E
√
L

2C
= ±

√
m

2

(
EL

h̄

)
.

The energies of the two dual systems are therefore related by

Ẽ = L

(
E

2C

)2

.

The dual SUSY potentials are

�(x) = C

x

√
L

�̃(r) = C
√
L

4r
+ K.
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The scalar potentials are given by

V±(x) = C(C ∓ C)L

x2

=



h̄2

mx2
for Ṽ −

0 for Ṽ +

Ṽ ±(r) = C(C ∓ 4C)L

16r2
+

(
CK

√
L

2r
+ K2

)

= h̄2(1 ∓ 4)

32mr2
− EL

4r
+

mE2L2

2h̄2

=




+
5h̄2

32mr2
− EL

4r
+

mE2L2

2h̄2 for Ṽ −

− 3h̄2

32mr2
− EL

4r
+

mE2L2

2h̄2 for Ṽ +

.

Note that all of the potentials turn out to be independent of the choice of sign for C.
Several things may be noted about these results. For example, the potentials Ṽ ±(r) form

a shape-invariant pair. Shape invariance means that there is a mapping from the parameters
{ai} of one potential to the parameters {bi} of the other potential such that

V+(ai, r) = V−(bi, r) + R(bi)

where R(ai) is independent of r. Shape invariance is a sufficient condition to guarantee exact
solvability [17, 18]. Formally, these two potentials represent the radial parts (with centripetal
barrier) of two Coulomb potentials:

VCoulomb(r) = −α

r
+
h̄2η(η ± 1)

2mr2
+

emα2

2η2h̄2 .

Here, α is the fine-structure constant, η = l + 1, and l is the angular momentum quantum
number. These two Coulomb problems have different values of angular momentum, but the
same charge. However, they are nonphysical in the sense that they have negative and fractional
angular momentum quantum numbers: l = − 3

4 and l = − 5
4 . The physical Coulomb problem

(with positive, integer-valued quantum number) is known to have a hidden supersymmetry
[19], but the formalism here implies that the supersymmetry will not be preserved by the
duality transformation.

Second, the original SUSY potential�(x) describes a system with unbroken SUSY on the
full real-number line, while its dual �̃(r) describes a system with unbroken supersymmetry
defined on the half-line r � 0. Thus, in this example at least, the duality transformation
preserves the ‘goodness’ of supersymmetry.

4. Duality and supersymmetry in two dimensions

In going from one to two spatial dimensions, we introduce the possibility of vector potentials
appearing. Suppose we have a vector potential A(x) and a SUSY potential �(x) in two
dimensions. In the simplest case, we can introduce a single Grassmann supercharge according
to

√
2Q = 1√

2m

(
p − e

c
A
)
σ + �σ3.
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Here, p and A are 2-vectors in the x–y plane. The two-dimensional ‘magnetic’ field
B = ∂xAy − ∂yAx will be a scalar function; if there were a third dimension it would be the
z-component of a 3-vector magnetic field. The Hamiltonian is found to be

H = 2Q2 =
(

1
2m

(
ih̄∇x + e

c
A
)2 − eh̄

2mc
B + �2 h̄√

2m
[(∂2�) + i(∂1�)]

h̄√
2m

[(∂2�) − i(∂1�)] 1
2m

(
ih̄∇x + e

c
A
)2

+ eh̄
2mc

B + �2

)
.

Block-diagonalizing, we find the pair of Hamiltonians:

H± = 1

2m

(
ih̄∇x +

e

c
A
)2

+ �2 ± h̄

2m

√
e2

c2
B2 + 2m

[
(∂1�)2 + (∂2�)2

]
.

Writing down the Schrödinger equations for these Hamiltonians, and then going to polar
coordinates

u2 = x2 + y2 φ = tan−1 y

x
we arrive at

0 =

− h̄2

2m

(
∂2

∂u2
+

1

u

∂

∂u
+

1

u2

∂2

∂φ2

)
+
(
�2

p(u, φ) − E
)

+
e2

2mc2
A2

p +
ih̄e

2mc
(∇x · Ap) +

ih̄e

mc
Ap · ∇x

± h̄√
2m

[
e2

2mc2
B2

p +

(
∂�p(u, φ)

∂u

)2

+
1

u2

(
∂�p(u, φ)

∂φ

)2
]1/2


ψ±(u, φ)

where the subscript p attached to a variable denotes that the variable is now written as a
function of the polar coordinates.

Now apply the two-dimensional version of the duality transformation:

r = u2

L
θ = 2φ.

The length scale L could again be chosen to be L = h̄c√
mE

. (In the case where B is a constant,

uniform field we could alternatively choose either L =
√

h̄c
eB

or L = mc
eB

.) In (r, θ) coordinates,
the Schrödinger equation becomes

0 =


− h̄2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
+

L

4r
(�̂2(r, θ) − E)

+
e2

2mc2
Â

2
+

ih̄e

2mc
[(∇r · Â) + 2Â · ∇r]

± h̄√
2m


 e2

2mc2
B̂

2
+

L

4r

(
∂�̂(r, θ)

∂r

)2

+
L

4r3

(
∂�̂(r, θ)

∂θ

)2



1/2

ψ±(r, θ)

where

�̂(r, θ) = �p(u(r, θ), φ(r, θ))

Â(r, θ) = Ap(u(r, θ), φ(r, θ))

B̂(r, θ) = L

4r
Bp(u(r, θ), φ(r, θ)).
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Because of the doubling of the angular variable, the wavefunction is now defined on a
two-sheeted Riemann surface. There are two independent solutions for each r and θ ; one is
unchanged by a 2π rotation, the other picks up a minus sign. So, following [12], we make the
substitution

ψ±(r, θ) = eisθ ψ̄
(s)
± (r, θ)

with s = 0 or s = 1
2 . ψ̄(s)

± has the usual periodicity

ψ̄
(s)
± (r, θ + 2π) = ψ̄

(s)
± (r, θ)

for both values of s.
The Schrödinger equations in terms of ψ̄(s)

± are now defined on ordinary 2-space, and are
given by

0 =


− h̄2

2m

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂θ
− is

)2
]

+
L

4r
(�̂2(r, θ) − E) +

e2

2mc2
Â

2 − seh̄

mc

Âθ

r2

+
ih̄e

2mc
((∇r · Â) + 2Â · ∇r) ± h̄√

2m


 e2

2mc2
B̂

2
+

L

4r

(
∂�̂(r, θ)

∂r

)2

+
L

4r3

(
∂�̂(r, θ)

∂θ

)2



1/2

 ψ̄

(s)

± (r, θ).

For each s, define new vector potentials on the (r1, r2)-plane:

A(g)
s = gs

r2
(r2,−r1)

where the two-dimensional ‘electric’ and ‘magnetic’ charges e and gs are related by

gs = h̄cs

e
.

This potential produces a vanishing magnetic field B
(g)
s except at r = 0. Note that even if

the vector potential is initially zero, a nonzero potential will be introduced by the duality
transformation. In terms of this new field, the previous equation becomes

0 =


− h̄2

2m

(
∇ − ie

h̄c

(
A(g)

s + Â
))2

+
L

4r
(�̂2 − E)

± h̄√
2m


 e2

2mc2
B̂

2
+

L

4r

(
∂�̂

∂r

)2

+
L

4r3

(
∂�̂

∂θ

)2



1/2

ψ

(s)
± (r, θ).

We wish to be able to put this back into the Schrödinger form:

0 =

− h̄2

2m

(
∇ − ie

h̄c
Ãs

)2
+ (�̃2 − Ẽ)

± h̄√
2m

[
e2

2mc2
B̃

2
s +

(
∂�̃s

∂r

)2

+
1

r2

(
∂�̃s

∂θ

)2
]1/2


 ψ̄

(s)
(r, θ).
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This implies conditions analogous to those in section 3:

(i) Ãs = Â + A(g)
s

(ii)
L

4r
(�̂2 − E) = �̃2

s − Ẽs

(iii)
e2

2mc2
B̂

2
+

L

4r

(
∂�̂

∂r

)2

+
L

4r3

(
∂�̂

∂θ

)2

= e2

2mc2
B̃

2
s +

(
∂�̃s

∂r

)2

+
1

r2

(
∂�̃s

∂θ

)2

.

As before, these can be combined into a single integral or differential equation. Note that the
first equation implies that

B̃s = B̂ + 2πgsδ(r)

so that B̃s could be eliminated from (iii).

5. Conclusion

It has been shown here that in quantum mechanics duality transformations and supersymmetry
can coexist, but only if certain compatibility conditions are satisfied. The generalization to
higher dimension or larger N is straightforward. These relatively simple conditions are very
restrictive in one spatial dimension; as the number of dimensions increases, they become more
complicated but less restrictive due to the appearance of additional degrees of freedom.

Once the issue of duality and supersymmetry in quantum mechanics has been raised,
many new questions open up, such as the compatibility of duality with shape invariance, or the
compatibility of supersymmetry with more general notions of duality than the one considered
here. These questions are left for future study.
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